

On The Retrieval of IWV From Microwave Attenuation Measurements: Experimental Results

F.Montomoli¹, G. Macelloni¹, Luca Facheris², Fabrizio Cuccoli², Samuele Del Bianco¹, Marco Gai⁵, Ugo Cortesi¹, Alberto Toccafondi³, Samantha Melani⁴, Luca Rovai⁴, Andrea Antonini⁴, Alberto Ortolani⁴

¹Institute of Applied Physics "Nello Carrara" IFAC-CNR, Sesto Fiorentino, -Italy, ²CNIT RaSS-U.O. c/o University of Florence-Italy, ³University of Siena-Italy, ⁴IBIMET - CNR, Sesto Fiorentino, Italy, ⁵ LABORATORI VICTORIA srl, Pistoia, Italy

SUMMARY

The measure of water vapor (WV) in the lowest part of the troposphere is a critical issue which, up to now, cannot be measured from space with sufficient accuracy. A novel technique, which is based on a microwave radio link and the measure of differential attenuation of two signals transmitted at closely spaced frequencies in the Ku-K band, has been recently proposed. In order to prove the potential of this technique a new low-cost microwave link has been designed and the first measurements will be performed by means of a ground-to-ground link. Instrument design and characteristics, as well as experimental results are presented here.

1. THE NDSA CONCEPT

- NDSA is a method to estimate the Integrated Water Vapor (IWV) along a microwave link in the troposphere.
- > It is based on the indirect measurement of the spectral sensitivity S related to the differential attenuation undergone by a pair of tone signals at two slightly separated frequencies f_1 and f_2 .

Example of ground-LEO configuration	Proposed measurement configuration
elev=5° - flight altitude=10 km	$f_1 = 18.8 \text{ GHz} - f_2 = 19.2 \text{ GHz}$

$$S_{f_c} = \frac{A(f_1) - A(f_2)}{(f_2 - f_1)A(f_1)} = \frac{1}{\Delta f} \left(1 - \frac{P_1}{P_2}\right) \quad (Eq. 1)$$

- \succ $P_{1,2}$: received powers of the two tones at $f_{1,2}$
- > $\Delta f = (f_2 f_1)$: frequency separation
- \succ $f_c = (f_2 + f_1)/2$: center frequency

 \succ S is strongly correlated to IWV \rightarrow it can be directly converted into IWV and the regression is independent of the elevation angle

$$IWV = a_1 S_{f_c} + a_0 \tag{Eq. 2}$$

Difference s18800-s19200

un 12:00 24-Jun 00:00 24-Jun 12:00 25-Jun 00:

Time [dd-mm HH·MM

Mean = -1.34e-03 dl

Simulation of IWV vs. S at 19 GHz for a receiver placed on a platform at 10 km altitude. Each point in the scatter plot refers to a spherically symmetric atmosphere generated through real radiosonde observations

 \blacktriangleright $\Delta f = 400$ MHz \succ $f_c = 19$ GHz

> $\checkmark f_c = 19$ GHz is the optimal frequency for an Earthsatellite link that includes the lowest tropospheric shells. The same concept is applicable to aerial platforms such as HAPS or stratospheric baloons

TABLE 1: Coefficients of the IWV-S19 linear regression

$\begin{bmatrix}a_1\\\text{[s-1}\cdot\text{g}\cdot\text{cm}^{-2}\end{bmatrix}\cdot10^{-9}$	a_o [g·cm ⁻²]	Relative error [%]
114	0.58	3.0

• F. Cuccoli, L. Facheris: "Normalized Differential Spectral Attenuation (NDSA): a novel approach to estimate atmospheric water vapor along a LEO – LEO satellite link in the Ku/K bands", IEEE Trans. Geosc. Rem. Sensing, Vol. 44, June 2006, pp. 1493-1503

2. THE INSTRUMENT

- > A low-cost instrument prototype able to perform the first NDSA measurements in ground-ground configuration has been designed and realized.
- > It consists of a synthesized microwave transmitter and a software defined radio microwave receiver operating from 18.2 to 19.2 GHz.
- > Two tones separated by 400 MHz are transmitted and sampled at the receiver with a frequency of 61 MS/second at the receiver.

3. GROUND TO GROUND EXPERIMENT

- > A first ground-to-ground experiment from June to August has been performed, to test the instrument and technique performances.
- > The transmitter has been installed at sea level and the receiver on the top of a mountain (around 2000 m a.s.l.) thus obtaining a transect in the troposphere of tens of Km.

Transmitter	characteristics	Receiver ch	aracteristics		0.2	
TX-Antenna Antenna Gain	Corrugated Circular Horn 21.6 dBi	RX-Antenna Antenna Gain	Corrugated Circular Horn 21.6 dBi	Test in anechoic	0.15	
Antenna Polarization	Circular	Antenna Polarization	Circular	<u>chamber:</u>	ලු 0.05 -	
Antenna HPBW	15.8°	Antenna HPBW	15.8°	-good stability	0 (rde	
Tx frequency range	9Khz-20GHz	LNB-band (RF)	18.2-19.2 GHz	incertitude		X . #
Tx frequency resolution	0.001 Hz	LNB-Noise Figure	1.6 dB		4 0.00	
Tx output power (Max))	20 dBm	LNB IF	1.55 - 1.95 GHz	$\Delta A < 0.1 \text{ dB}$	-0.1	
TX Output Frequencies	18.8 ; 19.2 GHz	ADC RF Bandwidth	75MHz-6GHz		-0.15	
		ADC Sample Rate (max)	61.44 MS/s (12 bit)		-0.2	23-Jun 00:00 2

4. RESULTS

4.1 - FROM \Delta A TO IWV

Using the differential attenuation ΔA aquired on the ground to ground link as input to equations 1) and 2) with the semiempirical coefficient summarized in Table 1, we derive the multitemporal IWV along the Bologna-Cimone transect (FIGURE 3).

4.2 – COMPARISON BETWEEN IWV- SWAMM AND IWV FROM OTHER SENSORS

In order to validate the NDSA estimation of IWV on the Cimone-Bologna link with a compatible spatial/temporal resolutions we exploit available IWV from different datasets:

Example of received tones amplitudes measured along 4/7/2018. A moving average filter with an integration time of 10 minutes was used.

(below) and (right side) respectively.

